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Figure 1. Unconditional Priors Matter in CFG-Based Conditional Generation. Fine-tuned conditional diffusion models often show
drastic degradation in their unconditional priors, adversely affecting conditional generation when using techniques such as CFG [28]. We
demonstrate that leveraging a diffusion model with a richer unconditional prior and combining its unconditional noise prediction with
the conditional noise prediction from the fine-tuned model can lead to substantial improvements in conditional generation quality. This
is demonstrated across diverse conditional diffusion models including Zero-1-to-3 [46], Versatile Diffusion [64], InstructPix2Pix [7], and
DynamiCrafter [62].

Abstract

Classifier-Free Guidance (CFG) is a fundamental technique
in training conditional diffusion models. The common prac-
tice for CFG-based training is to use a single network
to learn both conditional and unconditional noise predic-
tion, with a small dropout rate for conditioning. However,
we observe that the joint learning of unconditional noise
with limited bandwidth in training results in poor priors

for the unconditional case. More importantly, these poor
unconditional noise predictions become a serious reason
for degrading the quality of conditional generation. In-
spired by the fact that most CFG-based conditional mod-
els are trained by fine-tuning a base model with better un-
conditional generation, we first show that simply replacing
the unconditional noise in CFG with that predicted by the
base model can significantly improve conditional genera-
tion. Furthermore, we show that a diffusion model other
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than the one the fine-tuned model was trained on can be
used for unconditional noise replacement. We experimen-
tally verify our claim with a range of CFG-based condi-
tional models for both image and video generation, includ-
ing Zero-1-to-3, Versatile Diffusion, DiT, DynamiCrafter,
and InstructPix2Pix.

1. Introduction
In recent years, diffusion models [29, 56, 59] have shown
great success in generation tasks, becoming the de facto
standard generative model across many data modalities
such as images [50–53], video [4, 5, 30, 66], and au-
dio [13, 33, 44]. The success of diffusion models is not
only due to their high-quality results and ease of training,
but also the simplicity of adapting them into conditional
diffusion models. While previous generative models such
as GANs [23] and VAEs [39] require separate training for
each conditional generation task, making it costly to create
various conditional generative models, diffusion models in-
troduced a considerably more effective approach: training
an unconditional model (or a conditional model with sim-
ple conditions, such as text) as a base and branching out
into multiple conditional models.

At the core of the extendability of diffusion models in
easily converting an unconditional (or less conditioned)
base model into a conditional (or more conditioned) model
is the Classifier-Free Guidance (CFG) [28] technique. CFG
proposed to learn to predict both unconditional and con-
ditional noises using a single neural network, without in-
troducing another network, such as a classifier, as in the
classifier-guidance [15] approach. CFG combines uncon-
ditional and conditional noise predictions to generate data
conditioned on a given input. It has been widely adopted not
only for training a conditional model from scratch but also
for fine-tuning a base model to incorporate other conditions,
by adding encoders for the conditional input. Many suc-
cessful conditional generative models have been fine-tuned
using CFG from a base model. For example, Zero-1-to-
3 [46] and Versatile Diffusion [64] use variants of Stable
Diffusion [52] (SD) as a base, with additional encoders to
incorporate the input image as conditions, while Instruct-
Pix2Pix [7] uses SD1.5 as a base and incorporates text
editing instructions and input reference images as condi-
tions to perform instruction-based image editing.

Despite its successes and widespread usage, fine-tuning
a conditional model from a base model using the CFG tech-
nique has limitations, most notably producing lower-quality
results for unconditional generation. This is because both
conditional and unconditional noise are learned by the same
noise prediction network, thus sharing the limited capacity
of the neural network. Typically, the bandwidth allocated
for the unconditional noise is even more limited by setting
a 5-20% drop rate of the condition, an issue which is ex-
acerbated when the training data is limited or the model is

fine-tuned multiple times. More importantly, the low qual-
ity of unconditional noise also negatively affects the qual-
ity of conditional generation, since conditional generation
is performed by combining both conditional and uncondi-
tional noise predictions in the CFG formulation.

The crucial oversight in this practice is that the base
model already provides useful guidance for unconditional
generation, and the quality of its generated outputs is gener-
ally much better than that of the fine-tuned model. Hence,
we demonstrate that in conditional generation using a fine-
tuned diffusion model and CFG, simply replacing the un-
conditional noise of the fine-tuned diffusion model in CFG
with that of the base model leads to significant improve-
ments. This is a training-free solution that requires no ad-
ditional training or modifications to the neural networks. It
also highlights that when fine-tuning a diffusion model with
additional conditioning using CFG, the unconditional noise
does not need to be learned jointly.

Surprisingly, we show that the unconditional noise does
not need to come from the base unconditional model used
for fine-tuning, but can also come from other pretrained dif-
fusion models. This further eliminates the need to jointly
learn both unconditional and conditional noise using the
same noise prediction network when a pretrained uncondi-
tional diffusion model is available.

2. Related Works
Guidance in Diffusion Models. Classifier-Free Guidance
(CFG) [28] has become the de facto guidance technique for
conditional generation with diffusion models, leading to no-
table improvements in both condition alignment and image
quality. However, recent research has highlighted some of
its limitations. Kynkäänniemi et al. [41] have shown that
the specific timesteps at which CFG is applied significantly
impact image diversity, and proposed to restrict CFG to cer-
tain intervals.

Another line of work [1, 31] addresses the limited ap-
plicability of CFG for text-based conditions when using
off-the-shelf diffusion models like Stable Diffusion [52].
These approaches introduce a guidance technique that ex-
tends to a broader range of generation tasks, including un-
conditional generation, inverse problems, and conditional
generation with non-text conditions (e.g., depth maps [67]).
Recently, Karras et al. [38] propose Autoguidance which
uses the noise estimate from an under-trained version of
itself, instead of unconditional noise, to resolve inherent is-
sues of the entangled guidance for condition alignment and
image quality. A more detailed discussion on autoguidance
can be found in the Appendix. However, previous works
have not explored how the dynamics of CFG shift when a
diffusion model is fine-tuned for a specific task [7, 46, 64].
In this work, we address the critical issue of unconditional
noise degradation that occurs during fine-tuning and pro-
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pose a novel solution by combining noise predictions from
multiple diffusion models.

Merging Diffusion Models. Aligned with the mixture-
of-experts [8] and model merging [65] literature on foun-
dation models, there is growing research on methods for
merging diffusion models to enable effective composition
of multiple conditions. Diffusion Soup [3] directly merges
weights of different diffusion models, Mix-of-Show [25]
combines the weights of LoRA adapters [32], and Max-
Fusion [48] merges intermediate model features. Notably,
leveraging the iterative denoising process of diffusion mod-
els, merging their noise estimates has emerged as a sim-
ple yet powerful technique for composing conditions. By
merging noise estimates from the same diffusion model
with different input conditions, it becomes possible to gen-
erate outputs that contain a combination of these condi-
tions [2, 17, 18, 21, 22, 68]. Interestingly, multiple stud-
ies have shown that noise estimates from different diffusion
models [11, 20, 47] can also be merged effectively. In this
work, we extend this approach, demonstrating how merging
noise estimates can enhance generation quality when apply-
ing CFG to fine-tuned models.

Connection with Domain Guidance [70] Closely re-
lated to our method is the ICLR 2025 concurrent work
by Zhong et al. [70], which improves the generation qual-
ity of DiTs [50] fine-tuned on downstream tasks by re-
placing its unconditional noise prediction with that of the
base model. Our work was developed independently, and
although their general idea is the same as our proposed
method, there are four main differences:
• Our motivation is directly based on the empirical obser-

vation of the degraded unconditional priors of fine-tuned
models as shown in Figure 2 rather than analogies to
transfer learning.

• While Zhong et al. [70] mainly report results on DiTs
fine-tuned on small downstream datasets, we focus on us-
ing popular large-scale diffusion models [7, 46, 52, 64].

• We also provide additional insights on the choice of the
base model, showing that both diffusion UNets [52] and
DiTs [10] can be used in place of the base model inde-
pendent of the original architecture of the base model.

• While Zhong et al. [70] focus mainly on class conditional
fine-tuning, we consider fine-tuned models whose condi-
tions have a different modality from the base model as a
result of fine-tuning.

3. Background
3.1. Diffusion Models
Diffusion models [29, 56, 57] generate data by sampling
from a given distribution (e.g., Gaussian) and applying it-
erative denoising. In the forward process, random noise is

applied to clean data x0 following:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (1)

where ϵ ∼ N (0, I) and ᾱt ∈ [0, 1]1 [29]. In the reverse
process, the noisy data xt is denoised by modeling the tran-
sition as a Gaussian distribution:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (2)

where the variance σ2
t is predefined, and predicting the pos-

terior mean µθ(xt, t) can be reparameterized as a noise pre-
diction task using Tweedie’s formula [19] as below:

µθ(xt, t) = µ̃t

(
xt,

1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt))

)
(3)

=: µ̃ (xt, g(xt, ϵθ(xt))) (4)

where ϵθ(xt)
2 is the noise prediction from a diffusion

model, and µ̃t is the forward process posterior mean. Eq. 3
can be further interpreted as updating the posterior mean to-
wards the prediction of a clean observation from xt using
Tweedie’s formula. We define this clean observation pre-
dicted from Tweedie’s formula as the function g(·, ·) and
denote the predicted clean observation by x0|t.

DDIM Sampling. DDIM [57] enables efficient sampling
for diffusion models by modeling the non-Markovian tran-
sition q(xt−1|xt,x0), conditioned on x0. One denoising
step of DDIM is presented as the following deterministic
transition:

xt−1 =
√
ᾱt−1g(xt, ϵθ(xt)) +

√
1− ᾱt−1ϵθ(xt). (5)

3.2. Classifier-Free Guidance (CFG) [28]
For a diffusion model to perform conditional generation
given a condition c, it needs to sample from the condi-
tional distribution p(x|c). One approach is to use a clas-
sifier to guide the sampling process toward the conditional
distribution [15]; however, it comes at the cost of train-
ing a separate classifier. Alternatively, Ho and Salimans
[28] eliminated the need for a separate classifier by intro-
ducing Classifier-Free Guidance (CFG), a straightforward
modification to the training and sampling process of diffu-
sion models. In CFG training, the model learns to predict
the noise in xt at timestep t not only when a condition c is
given, but also when a null condition ∅ is given. That is, the
diffusion model performs both conditional (i.e., ϵθ(xt, c))
and unconditional (i.e., ϵθ(xt, ∅)) noise prediction. This is
achieved by setting the condition c to the null condition ∅
with a certain probability during training. With a model

1With variance schedule {βt}Tt=1, αt := 1−βt and ᾱt :=
∏t

s=1 αs.
2We omit timestep t in ϵθ(xt) and g(xt, ϵθ(xt)) for brevity.
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Algorithm 1 DDIM Sampling with CFG

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ϵ

(γ)
θ (xt, c) = ϵθ(xt, ∅) + γ(ϵθ(xt, c)− ϵθ(xt, ∅))

4: x0|t = g(xt, ϵ
(γ)
θ (xt, c))

5: xt−1 =
√
ᾱt−1x0|t +

√
1− ᾱt−1ϵ

(γ)
θ (xt, c)

6: end for
7: return x0

trained using this technique, CFG can be applied in the sam-
pling process by replacing ϵθ(xt) in Eq. 5 with:

ϵ
(γ)
θ (xt, c) = ϵθ(xt, ∅) + γ(ϵθ(xt, c)− ϵθ(xt, ∅)), (6)

where γ is a guidance scale. A detailed algorithm of CFG
with DDIM sampling [57] is shown in Alg. 1.

Analysis of CFG. Based on the connection between dif-
fusion models and score-based models [58, 59], ϵθ(xt, c)
and ϵθ(xt, ∅) model the conditional score ∇xt

log p(xt|c)
and the unconditional score ∇xt

log p(xt) (up to a scal-
ing factor), respectively. We can interpret the CFG noise
ϵ
(γ)
θ (xt, c) in Eq. 6 as an approximation of the true score

∇xt
log pγ(xt|c) where pγ(xt|c) := p(xt)

(
p(xt|c)
p(xt)

)γ
is

the gamma-powered distribution. We can rewrite pγ(xt|c)
as follows:

pγ(xt|c) = p(xt)

(
p(xt, c)

p(c)p(xt)

)γ
∝ p(xt)p(c|xt)γ .

Thus, CFG guides the samples via the implicit classi-
fier p(c|xt)γ . Using γ > 1 results in sharpening the
mode corresponding to c which leads to better condition-
alignment [28] and image quality [38].

4. Unconditional Priors Matter
In this section, we discuss the negative impact of de-
graded unconditional noise estimates in diffusion mod-
els fine-tuned on a narrower task-specific data distribution
(Sec. 4.1). We then present a simple yet effective approach
to enhance the generation quality of these models by lever-
aging richer unconditional noise estimates from other pre-
trained diffusion models (Sec. 4.2).

4.1. Poor Unconditional Priors Affect Conditional
Generation

The CFG training technique, introduced in Sec. 3, is also
commonly used for fine-tuning an existing diffusion model
to incorporate new types of input conditions [7, 36, 46, 55,
64]. Consider a pretrained diffusion model, such as Stable
Diffusion [52], referred to as the base model, parameterized
by ψ. This base model can be fine-tuned on task-specific
datasets to incorporate certain types of input conditions,

such as camera poses [46] or a reference image [64]. We
refer to the resulting model as the fine-tuned model, param-
eterized by θ.

After fine-tuning the base model with CFG training, con-
ditional generation with the fine-tuned model is performed
by combining conditional and unconditional noise predic-
tions following Eq. 6, yielding the CFG noise ϵ(γ)θ (xt, c).
However, we observe a significant quality drop in uncon-
ditional generation with the fine-tuned model compared to
the base model. As shown in Fig. 2, the unconditional out-
puts from fine-tuned models [7, 46, 64] clearly lack detailed
semantics and exhibit lower image quality. These results
are expected, as (1) the unconditional distribution is inher-
ently more complex than the conditional distribution, and
(2) only a small fraction of the training data is utilized in
each training iteration due to the low CFG dropping proba-
bility (typically 5-20%).

Importantly, we observe that the quality of the condi-
tional generation in these fine-tuned models is negatively
impacted by poor unconditional priors. This degradation
can be understood through the CFG [28] formulation: CFG
is designed to sample from the gamma-powered distribu-
tion pγ(xt|c) ∝ p(xt)p(c|xt)γ . Poor unconditional priors
introduce approximation errors to p(xt), which in turn af-
fects both p(xt) and p(c|xt) ∝ p(xt|c)

p(xt)
. Although a key ad-

vantage of CFG is the joint modeling of the unconditional
and conditional distributions, we find that under limited data
or multiple fine-tuning, the fine-tuned model loses the rich
unconditional prior of the base model, leading to quality
degradation.

4.2. Finding Richer Unconditional Priors
Can we improve the quality of conditional generation by
incorporating better unconditional priors during sampling?
Note that for fine-tuned diffusion models, we have access
to a diffusion model with reliable unconditional priors: its
base model. Therefore, we propose a simple yet effective
fix, combining the unconditional noise prediction from the
base model with the conditional noise prediction from the
fine-tuned model. For this, the CFG noise in line 3 of Alg. 1
is modified as follows:

ϵ
(γ)
θ,ψ(xt, c) = ϵψ(xt, ∅) + γ(ϵθ(xt, c)− ϵψ(xt, ∅)), (7)

where ϵψ and ϵθ denote the base model and fine-tuned
model, respectively. Then DDIM sampling step becomes:

xt−1 =
√
ᾱt−1g(xt, ϵ

(γ)
θ,ψ(xt, c)) +

√
1− ᾱt−1ϵ

(γ)
θ,ψ(xt, c)

Surprisingly, this simple modification results in significant
improvements in the output quality of conditional gener-
ation. We demonstrate this through both qualitative and
quantitative evaluations in Sec. 5.

A natural next question that arises is: should the uncon-
ditional noise come from the base model or from another
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Stable Diffusion v1.4 [52] Versatile Diffusion [64] Zero 1-to-3 [46] InstructPix2Pix [7]

Figure 2. Unconditional samples from different diffusion models. Stable Diffusion [4], which often serves as the base model for fine-
tuning conditional diffusion models, generates plausible images, whereas other fine-tuned diffusion models fail to sample realistic images.

unconditional model? We find that the base model does not
necessarily need to be the true base model from which the
new conditional model was fine-tuned from, but can instead
be another diffusion model with good unconditional priors.
In our experiments, we show that even though some mod-
els have been fine-tuned on SD1.x, using unconditional
predictions of SD2.1 or PixArt-α results in further im-
provements as shown in Sec. 5.

Combining Diffusion Models. Although the base model
and the fine-tuned model have different model weights,
their noise predictions can be combined as done in previ-
ous works [11, 20, 47]. Based on the connection between
energy-based models (EBMs) and diffusion models [45], at
each timestep, t, our method is equivalent to sampling from
the time-annealed distribution pψ(xt)1−γpθ(xt|c)γ where
pψ(xt) and pθ(xt) are the distributions modeled by the base
and fine-tuned models, respectively. Notably, pψ(xt) can
be modeled by any pretrained diffusion model which may
have different weights or even different architecture from
the fine-tuned model so long as pψ(xt) is a better approxi-
mation of the true unconditional distribution than pθ(xt).

5. Experiments

We validate our method on five conditional diffusion mod-
els, each trained for distinct conditional generation tasks:
Zero-1-to-3 [46], Versatile Diffusion (VD) [64], DiT [50],
DynamiCrafter [62], and InstructPix2Pix [7]. For ex-
periments on models fine-tuned from Stable Diffusion,
we present the results using unconditional noise predic-
tions from both the true base model of the fine-tuned net-
works and other diffusion models, Stable Diffusion 2.1
(SD2.1) [52] and PixArt-α [10]. Notably, even when
the fine-tuned model is a UNet, our method yields improve-
ments when using PixArt-α, which is a DiT, in place of
the base model. We refer readers to Appendix for details
on the experimental setup for each application.

Method LPIPS↓ PSNR↑ SSIM↑

Zero-1-to-3 [46] 0.182 16.647 0.824
Ours w/ SD1.4 0.163 17.514 0.842
Ours w/ SD2.1 0.158 17.801 0.848

Ours w/ PixArt-α 0.169 17.069 0.825

Table 1. Novel View Synthesis with Zero-1-to-3 [46]. Our
method improves quality of novel view images (bold represents
the best, and underline, the second best method).

Method FID ↓ FDDINOv2 ↓ CLIP-I ↑ DINOv2 ↑

VD [64] 8.38 167.65 0.93 0.91
Ours w/ SD1.4 6.68 156.77 0.94 0.92
Ours w/ SD2.1 7.80 151.48 0.94 0.92

Ours w/ PixArt-α 6.29 148.48 0.94 0.92

Table 2. Image Variations with Versatile Diffusion [64]. Our
sampling method achieves best performances across all metrics
(bold represents the best, and underline, the second best method).

5.1. Single-Condition CFG Formulation
In this section, we provide experimental results of our
method when applied to diffusion models that use single-
condition CFG formulation. Models of this category sam-
ples using noise of the form provided in Eq. 6.

Zero-1-to-3 [46] Zero-1-to-3 is a conditional diffusion
model for novel view synthesis, taking a reference image
and relative camera poses as input. It is fine-tuned from
Stable Diffusion Image Variations (SD-IV) [36], which it-
self is originally fine-tuned from SD1.4. Due to the multi-
ple fine-tuning stages, we opted to use SD1.4 as the base
model. We evaluate the samples on the Google Scanned
Objects (GSO) dataset [16] using LPIPS [69], PSNR, and
SSIM. As shown in Tab. 1, our method, which incorporates
unconditional noise predictions from base models, achieves
significant improvements across all three metrics, with the
best performances observed when using SD2.1 as the un-
conditional prior. Fig. 3 shows that using improved uncon-
ditional noise from the base model enhances lighting quality
(row 1), reduces color saturation (row 2) and shape distor-
tions (rows 3 and 4).
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Ground
Truth

Zero-1-to-3
(Baseline)

w/ SD1.4
(Ours)

w/ SD2.1
(Ours)

w/ PixArt-α
(Ours)

Figure 3. Novel View Synthesis with Zero-1-to-3 [46]. Outputs from Zero-1-to-3 often show inaccuracies in lighting or shape distortions
during novel view synthesis. By incorporating unconditional noise predictions from Stable Diffusion [52] or PixArt-α [10], our method
achieves clear improvements in output quality.

Versatile Diffusion [64] Versatile Diffusion (VD) is a
multi-task diffusion model designed to handle text-to-
image, image variations, and image-to-text tasks within a
unified architecture. VD is progressively fine-tuned from
SD1.4 in three stages to handle additional image condi-
tions on top of text condition. Due to the cascaded fine-
tuning scheme, VD displays the worst image-unconditional
generation quality as shown in Fig. 2. We focus on using
VD for image variations to generate semantically similar
images from a reference image. We report FID [27] and
FDDINOv2 [60] on COCO-Captions [43] for image quality
assessment and CLIP-I [26] and DINOv2 [49] image simi-
larity metrics to evaluate condition alignment. As shown in
Tab. 2, using unconditional noise prediction from the base
models yields better FID and FDDINOv2 while retaining sim-
ilar CLIP-I and DINOv2 image similarity, showing an per-
formance improvement while maintaining condition align-
ment. As shown in Fig. 4, VD often generates images with
highly saturated colors (rows 1 and 2) and distorted objects
(row 3) while our method corrects both.

DiT [50] Although the experiments so far have been con-
ducted using diffusion models with the UNet architecture,

we show that our method holds for fine-tuned DiTs [50] as
well. Since there are no publicly available fine-tuned DiT
models, we fine-tune DiT-XL/2 on the standard downstream
tasks SUN397 [61], Food101 [6], and Caltech101 [24]. The
FID for the different fine-tuning tasks are shown in Tab. 3.
Incorporating the unconditional noise from the base DiT-
XL/2 results in improved FID. We also observe larger ben-
efits when the fine-tuning dataset is large (Food101 and
SUN397) corroborating our observation that the degrada-
tion in unconditional priors is amplified by the limited com-
putational budget. While we observe no improvement for
Caltech101, the dataset is over 10 times smaller than both
SUN397 and Food101, thus the model is given sufficient
time to fit the dataset despite the low CFG condition drop
rate (10%). In practice, large-scale fine-tuning like in Zero-
1-to-3 and Versatile Diffusion often suffer from limited data
and computation. In these practical settings, the degrada-
tion of the unconditional prior becomes highly detrimental
as we have shown.
5.2. Dual-Condition CFG Formulation
In this section, we provide experimental results on diffu-
sion models which use the dual-condition CFG formulation.
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w/ SD1.4
(Ours)
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Figure 4. Image Variations with Versatile Diffusion [64]. Versatile Diffusion often suffers from style and detail degradation—excessive
saturation (rows 1 and 3) or loss of key content (row 2). In contrast, our method, leveraging SD1.4, SD2.1, or PixArt-α as uncondi-
tional priors, achieves noticeable improvements in performance.

Method SUN397 Food101 Caltech101

Fine-tuned DiT-XL/2 17.12 18.31 24.05
Ours 14.51 17.67 24.15

Table 3. Class-conditional generation with DiT[50]. FID-5k
evaluated on three fine-tuning tasks (SUN397 [61], Food101 [6],
and Caltech101 [24]). Our method improves FID of the fine-tuned
models (bold represents the best method).

Diffusion models in this category are conditioned on two
conditions and sample using the modified CFG noise
ϵθ(xt, c1, c2) = ϵθ(xt, ∅, ∅)

+ γ1(ϵθ(xt, c1, ∅)− ϵθ(xt, ∅, ∅))
+ γ2(ϵθ(xt, c1, c2)− ϵθ(xt, c1, ∅)). (8)

Notably, the dual-condition CFG formulation has two un-
conditional terms trained using CFG condition dropout:
ϵθ(xt, ∅, ∅) and ϵθ(xt, c1, ∅). We replace ϵθ(xt, ∅, ∅) with
the base model unconditional noise prediction ϵψ(xt, ∅).
However, since the other unconditional term ϵθ(xt, c1, ∅)
is not replaced, we observe less improvements in this case
than in the single-condition CFG formulation. This is to
be expected as the quality degradation stems from training

using a low dropout rate for the condition which is applied
to both ϵθ(xt, ∅, ∅) and ϵθ(xt, c1, ∅), only one of which is
replaced by the better base model unconditional prior.
DynamiCrafter [62] We apply our method to Dy-
namiCrafter [62], a text-and-image-to-video diffusion
model fine-tuned from the text-to-video diffusion model
VideoCrafterT2V [9]. DynamiCrafter incorporates an im-
age condition cI as c1 and a text condition cT as c2. For our
method, we replace the DynamiCrafter unconditional noise
with the VideoCrafterT2V unconditional noise. We report
quantitative results using VBenchI2V [12, 35] which mea-
sures video quality and temporal consistency across multi-
ple dimensions. For more details on the metrics, please refer
to the VBench paper [35]. Quantitative results are reported
in Tab. 4. Our method outperforms the baseline in 7 out of
9 metrics, yielding more consistent video generation with
higher aesthetic quality. As shown in Fig. 5, our method is
more temporally consistent (first video) and less distorted
(second video).
InstructPix2Pix [7] InstructPix2Pix (IP2P) tackles
instruction-based image editing by fine-tuning SD1.5
to condition on both text (editing instruction, as c2) and
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Method Subject
Consistency

Background
Consistency

Temporal
Flickering

Motion
Smoothness

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

I2V
Subject

I2V
Background

DynamiCrafter [62] 90.80 96.73 95.21 96.67 59.59 57.06 64.10 92.77 94.56
Ours w/

VideoCrafter1 [30] 91.49 97.03 95.34 96.86 57.32 57.51 63.15 93.49 94.72

Table 4. Video Generation with DynamiCrafter [62]. All metrics are scored out of 100, higher indicates better performance.

Input Generated Frames

Figure 5. Image-to-Video Generation with Dynami-
Crafter [62]. Our method is more temporally consistent
(lighting on the biker) and less distorted (the hand and face in the
second video).

image (as c1) to generate the edited image. We evaluate
the performance on the EditEvalv2 benchmark [34]. To
assess identity preservation, we compute the CLIP image
similarity (C-I) [26] between the edited and input images.
To evaluate the faithfulness of the edited images, we
measure CLIP text alignment (C-T), CLIP Directional
Similarity (C-D), Image Reward (IR) [63], and PickScore
(PS) [40] based on the edited image prompt. The reported
PS are compared against IP2P. As shown in Tab. 5, our
method shows better alignment with the prompt while
preserving the identity of the source image. We observe
improvements in both IR and PS which have been observed
to better align with human preference [40, 63] with slight
underperformance in CLIP-T (for SD1.5 and SD2.1).
Qualitative results are shown in Fig. 6. Our method
generates faithful, high-fidelity edited images (rows 1 and
2) whereas IP2P creates distorted images (row 3).

6. Conclusion
We presented a novel, training-free approach to improving
the generation quality of a CFG-based fine-tuned condi-
tional diffusion model by replacing the low-quality uncon-
ditional noise with richer unconditional noise from a sepa-
rate pretrained base diffusion model. We validated our ap-
proach across a range of diffusion models trained for dis-
tinct conditional generation, including image variation [64],

Method C-I ↑ C-T ↑ C-D ↑ IR ↑ PS ↑

IP2P [7] 0.909 0.294 0.174 -0.510 −
Ours w/ SD1.5 0.911 0.291 0.186 -0.460 0.514
Ours w/ SD2.1 0.913 0.290 0.184 -0.464 0.518

Ours w/ PixArt-α 0.915 0.297 0.185 -0.363 0.532

Table 5. Image Editing with InstructPix2Pix (IP2P) [7]. We
normalize text and image similarity scores: C-I, C-T, and C-D.
(bold represents the best, and underline represents the second best
method.)

Input
Image

IP2P
(Baseline)

w/ SD1.5
(Ours)

w/ SD2.1
(Ours)

w/ PixArt-α
(Ours)

‘‘Make the gown crystal ’’

‘‘turn the kitten into a sculpture ’’

‘‘change the woman to a storm-trooper ’’

Figure 6. Image Editing with InstructPix2Pix (IP2P) [7]. Ap-
plying our method improves alignment with the editing prompt
while preserving the identity of the source image.

image editing [7], novel view synthesis [46], and video gen-
eration [62]. Notably, we find that the separate pretrained
diffusion model can have different weights and architecture
from the original base model.
Limitations. Although our method is training-free, it in-
volves loading a second model into memory which in-
creases memory cost. Furthermore, we can no longer paral-
lelize computation as done in CFG, resulting in slight infer-
ence time overhead. However, the inference speed is only
slightly affected as shown in the Appendix.
Discussions. Our method significantly improves diverse
fine-tuned diffusion models, but proves less effective for
fine-tuning methods that incorporate adapter networks, such
as ControlNet [67] and GLIGEN [42], which exhibit less
degradation in unconditional priors. Identifying uncon-
ditional priors for these advanced fine-tuning techniques
would be a valuable future direction.
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Appendix
In this supplementary material, we first provide additional
evidence for the fine-tuned models’ poor unconditional pri-
ors by quantitatively showing that the base model has better
unconditional generation quality than the fine-tuned models
in Sec. A. In Sec. B, we include more details about the ex-
perimental setups for Zero-1-to-3, Versatile Diffusion, DiT,
DynamiCrafter, and InstructPix2Pix. We discuss and com-
pare our work against Autoguidance [38] in Sec. C, and in-
clude more qualitative results in Sec. D and more ablation
studies on the CFG scale in Sec. E. Finally, we provide de-
tails on the inference speed and memory cost of our method
in Sec. F.

A. Quantitative Evaluation of Unconditional
Samples

In the main paper, we argued that the poor unconditional
priors from the fine-tuned models degrade the quality of the
conditional generation. We qualitatively showed in Fig. 2
of the main paper that the fine-tuned models exhibit poor
unconditional generation quality. In this section, we quan-
titatively show that the base models have better uncondi-
tional generation quality than the fine-tuned models. We
unconditionally sample 5000 images from each of SD1.4,
SD2.1, PixArt-α, Zero-1-to-3, Versatile Diffusion, and
InstructPix2Pix, and evaluate the image quality using In-
ception Score (IS) [54]. The results are shown in Tab. 6.
We observe that the fine-tuned models indeed have quantita-
tively worse unconditional generation than the base models.
Thus, in the main paper, we proposed replacing the poor un-
conditional noise from the fine-tuned models with the good
unconditional noise from the base model which improves
the conditional generation quality.

Method IS ↑

SD1.4 14.085
SD2.1 12.640

PixArt-α 9.224

Versatile Diffusion 2.704
Zero-1-to-3 9.140

InstructPix2Pix 5.852

Table 6. Image Model Unconditional Generation. We sample
using the unconditional noise predictions from each model. The
unconditional samples from SD1.4, SD2.1, and PixArt-α are
higher quality than those of the fine-tuned models. (bold repre-
sents the best performance.)

B. Experiment Details
B.1. Zero-1-to-3 [46]
We evaulate our method using the Google Scanned Ob-
jects (GSO) dataset [16] which consists of over a thousand

scanned objects. We render six views for each object at
fixed radii and elevation with azimuths uniformly spaced
60◦ apart from each other. The first view is used as the refer-
ence image and Zero-1-to-3 is used to generate the remain-
ing five images for evaluation. We use 50 steps of DDIM
and a CFG scale of γ = 5.0.

B.2. Versatile Diffusion [64]
We use the COCO-Captions [43] 2014 validation set as the
ground truth dataset. We randomly select 30,000 images
from the validation set as input conditions to Versatile Dif-
fusion and compute the FID and FDDINOv2 against the full
validation set. We use 50 steps of DDIM and a CFG scale
of γ = 2.0.

B.3. DiT [50]
We sample the images using γ = 1.5 and 50 steps of
DDIM. The base model used is DiT-XL/2 trained on Ima-
geNet 256×256 [14]. The fine-tuning is done on each of the
datasets using 20,000 steps with batch size 64 and learning
rate 0.0001. To account for the impact of random variation,
we compute the FID three times and report the minimum,
as done by Karras et al. [37]. We provide additional details
on each of the dataset below.

SUN397 [61] SUN397 [61] is a dataset used for testing
algorithms for scene recognition consisting of 108,754 im-
ages distributed among 397 categories.

Food101 [6] Food101 [6] consists of 101,000 images split
among 101 food categories. Each category contains 250 test
images and 750 training images.

Caltech101 [24] Caltech101 [24] contains images of ob-
jects belonging to 101 classes, containing 9,145 images in
total. Each class contains between 40 and 800 images with
a typical edge length of between 200 and 300 pixels.

B.4. DynamiCrafter [62]
We sample 256 × 256 resolution videos using 50 steps of
DDIM with a CFG scale of γT = 7.5 and γI = 1.5. Al-
though the original paper uses a CFG scale of γT = γI =
7.5, we find that their choice of CFG scale results in mostly
static images, as shown in their low dynamic degree of
40.57% in the VBench benchmark [35]. In contrast, the
baseline DynamiCrafter with our choice of CFG scale has a
higher dynamic degree of 59.59%.

B.5. InstructPix2Pix [7]
We evaluate the performance of InstructPix2Pix (IP2P) us-
ing the EditEvalv2 benchmark [34] which consists of 150
high quality images with edits from 7 categories.
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γ 3.0 4.0

Zero-1-to-3 [46] 0.192 0.170
Ours w/ SD1.4 0.170 0.165
Ours w/ SD2.1 0.165 0.161

Ours w/ PixArt-α 0.173 0.171

Table 7. Zero-1-to-3 [46] (CFG Scales). We report the
LPIPS [69] of applying our method to Zero-1-to-3 using various
CFG scales (bold represents the best, and underline represents the
second best method).

IP2P uses a dual text-image CFG formulation:

ϵθ(xt, cI , cT ) = ϵθ(xt, ∅, ∅)
+ γI(ϵθ(xt, cI , ∅)− ϵθ(xt, ∅, ∅))
+ γT (ϵθ(xt, cI , cT )− ϵθ(xt, cI , ∅)) (9)

For our method, we replace the IP2P fully unconditional
score ϵθ(xt, ∅, ∅) with the unconditional score from SD1.5
or SD2.1. We use 100 steps of DDIM with a CFG scale of
γI = 1.5 and γT = 7.5.

C. Comparison with Autoguidance [38]
In Autoguidance [38], both versions of the model are con-
ditioned on the same condition. This was done in order to
isolate the image quality improvement from the improve-
ment in condition-alignment. In contrast, our method com-
bines models whose conditions have different modalities,
correcting the degradation which stems from the quality of
the unconditional prior used in the CFG formulation. Fur-
thermore, Autoguidance emphasizes the importance of de-
signing the degradations to match the degradation of the
conditional model. One of our main contributions is show-
ing that the finetuned unconditional degradation hurts rather
than helps the quality of conditional generation.

D. Additional Qualitative Results
We provide additional qualitative results for Zero-1-to-3
(Fig. 7), Versatile Diffusion (Fig. 8), DiT (Fig. 9), Dynami-
Crafter (Fig. 10), and InstructPix2Pix (Fig. 11).

E. Choice of CFG Scale
In this section, we provide an ablation study on the choice
of CFG scale γ for Zero-1-to-3 [46] and Versatile Diffu-
sion [64]. The results are shown in Tab. 7 and 8.

F. Memory and Inference Speed
As shown in Tab. 9, the inference speed is only slightly af-
fected by our method.

γ 5.0 7.5

Versatile Diffusion [64] 42.333 44.796
Ours w/ SD1.4 35.596 36.072
Ours w/ SD2.1 38.444 37.713

Ours w/ PixArt-α 40.243 40.888

Table 8. Versatile Diffusion [64] (CFG Scales). We report the
FID-5k of applying our method to Versatile Diffusion using vari-
ous CFG scales (bold represents the best, and underline represents
the second best method).

Method Memory (GB) Speed (seconds/sample)
Baseline Ours Baseline Ours

Zero-1-to-3 4.93 10.06 2.92 3.59
VD 5.68 10.80 7.20 8.17
DiT 3.11 5.65 4.24 4.96
IP2P 5.13 10.14 19.45 21.43

DynamiCrafter 19.17 29.03 125.15 142.84

Table 9. Memory and Inference Speed using float32 precision.
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w/ SD1.4
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(Ours)
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Figure 7. Novel View Synthesis with Zero-1-to-3 [46]. Zero-1-to-3 tends to produce views that have inaccurate lighting, coloring, or
shape. Combining Zero-1-to-3 with the unconditional noise from SD1.4, SD2.1, or PixArt-α corrects these inaccuracies.
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w/ SD1.4
(Ours)

w/ SD2.1
(Ours)

w/ PixArt-α
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Figure 8. Image Variations with Versatile Diffusion [64]. Images generated from Versatile Diffusion tend to be oversaturated and
distorted. Combining Versatile Diffusion with the unconditional noise predictions from SD1.4, SD2.1, or PixArt-α corrects these
artifacts. 15



Figure 9. Class-conditional generation with DiT [50]. Class-conditional generation using DiT fine-tuned on SUN397 [61], Food101 [6],
and Caltech101 [24].
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Input Generated Frames

Figure 10. Image-to-Video Generation with DynamiCrafter [62]. Our method is more temporally consistent (number of horses in the
first video, shading of the guitar in the second video) and less distorted (hand and face in the last video).

17



Input
Image

IP2P
(Baseline)

w/ SD1.5
(Ours)

w/ SD2.1
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w/ PixArt-α
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‘‘Change the horses to unicorns ’’

‘‘Replace the spaceship with an eagle ’’

‘‘Change the weather to sunny ’’

‘‘Change the beach to grass in the painting ’’

‘‘Change to a kids crayon drawing ’’

Figure 11. Image Editing with InstructPix2Pix (IP2P) [7]. InstructPix2Pix tends to produce distorted edits. Replacing the IP2P fully
unconditional noise with the unconditional noise from SD1.5, SD2.1, or PixArt-α corrects these distortions and improves image
quality.
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